
Authorization in Data Management Systems

Darrell Raymond
Alternative Output Inc.

Waterloo, Ontario, Canada

Abstract Computer systems for data management
are increasingly concerned with the authorization
problem: the problem of creating and managing the
matrix of users, objects, and allowable operations. This
paper discusses the authorization problem and explains
why the problem is likely to become more complex in
the future. We then present the use of database nor-
malization theory to formalize and address the authori-
zation problem. A variety of issues related to authori-
zation that arise in practical data management deploy-
ments are discussed. Finally, recommendations are
made for further research on authorization.

 Introduction

Engineering and manufacturing companies need to
manage drawings, documents, bills of materials, engi-
neering change orders, and other data about their
products. In the past this information was managed as
paper. The trend today, however, is to store data elec-
tronically, using data management software from
commercial vendors.1 Data management systems are
application suits built on relational databases that pro-
vide the following capabilities:

ú Storage of large numbers of documents in an
electronic ‘vault’

ú Change management for documents, typically
through the use of check-in/check-out and revision
control

1 Vendors of data management software include companies such as

Agile, Auto-trol, Enovia, FileNet, Documentum, SDRC, Uni-
graphics Solutions, MatrixOne, Parametric Technologies, and
Eigner + Partner. Their products fall into categories such as elec-
tronic document management (EDM), product data management
(PDM), configuration management (CM and CM II), collabora-
tive product commerce (CPC), and knowledge management
(KM).

ú Storage and change management of product data
and product structure (component-assembly or ‘bill
of material’ relationships)

ú Storage and management of relationships between
product data and documents

ú Definition and execution of structured processes
or workflow

A data management system of this kind can provide
the following benefits to an organization:

ú Timely access to documents and drawings

ú Better configuration control

ú Reduced cycle time for engineering change

ú Reduced need for data management personnel

ú Reduced time spent in data management

In general, an engineering data management system is
an accelerator—it speeds the delivery of information
and increases the volume of information that can be
transferred in a given unit of time. This advantage has
a downside, however—if the security of the system is
not sufficient, then the loss of information to unauthor-
ized parties can also be greatly accelerated. The secu-
rity requirements of an engineering data management
system are significant when the system contains a
large fraction of a company’s intellectual property.

 The authorization problem

Security requirements include the following:

ú Authentication

ú Authorization

ú Data integrity

ú Data privacy

ú Reliable service

An engineering data management system’s needs for
authentication, integrity, privacy, and reliability are not
dramatically different from typical IT systems. The
requirement for authorization, however, far exceeds
the typical case. This is because an engineering data
management system tends to have a more sophisti-
cated notion of people, operations, and data. The
authorization subcomponent of an engineering data
management system is therefore an important func-
tional element.

We shall define an authorization specification as a
n-dimensional matrix of elements that are involved in
authorization. A simple authorization specification
would be three-dimensional, and deal with people, ob-
jects, and operations: if the value of (x, y, z) is 1, then
person x can apply operation z to object y. The
authorization problem is the problem of populating
the authorization matrix so that we have reasonable
guarantees that the matrix is correctly and completely
populated, and so that the matrix can be maintained in
a reasonably efficient manner.

In a typical engineering or manufacturing company,
this matrix is potentially very large. The number of
objects y can easily be in the millions:

ú A typical manufacturing firm maintains data on at
least 105 parts and 106 component-assembly rela-
tionships

ú Each part may have several associated documents
(specification, geometric drawing, parts list, sche-
matic, gerber file, application drawing, etc.)

ú Parts typically exist in multiple revisions, each of
which may have a drawing and usually one or
more engineering change orders

ú Some companies also maintain information on se-
rialized parts—thus, y is potentially as large as the
total number of units ever produced

The number of operations z is larger than the standard
read-write-execute of common file systems. A typical
data management system may support as many as 30
different operations, including:

ú Create—generate a new object

ú Read—read the attributes of an object

ú View—read the files associated with an object

ú Modify—edit the attributes of an object

ú Revise—generate a revision of an object

ú Print—allow the files associated with the object to
be printed

ú Check-out (check-in)—export (import) files asso-
ciated with the object

ú Delete—delete an object

ú Lock (unlock)—disallow (allow) file checkout

ú Promote (demote)—move the object to the next
(previous) stage in its lifecycle

ú Grant—allow other users privileges

ú Set privileges—change any of the authorizations
for an object

ú Link (unlink)—create (delete) a certain kind of
relationship to another object

ú Execute—execute a program or method associ-
ated with an object

Although x, the number of users of a data manage-
ment system is moderate, each of the users can belong
to multiple groups and can participate in multiple roles.
A ‘role’ or a ‘group’ is essentially a set of persons that
can be treated as identical for some business purpose.
Many data management systems treat a group or a
role as a substitute for a person. In other words, x can
be set-valued, with sets chosen from the set of per-
sons.2

Workflow adds another dimension to the authorization
matrix, that of state. In workflow systems, it is typical
to define processes where (for example) person x can
apply operation z to object y only when that object is in
state a. States typically include such concepts as
‘draft’, ‘in work’, ‘review’, ‘release’, ‘superseded’,
and ‘obsolete’, but others are possible. It is not unusual
to have different sets of states for different kinds of
objects; thus, parts and drawings will be subject to
formal release control and go through several states,
but documentation may be handled more informally
and have only one or two states.

In addition to adding another dimension, the notion of
state also increases z, because the system requires
operations to change the state of an object, and these
operations are subject to authorization control.

2 Some data management systems allow full boolean combinations

of person and role sets.

Given the foregoing issues, it is clear that in a typical
situation the authorization matrix may easily exceed
1012 entries. This makes the authorization problem
quite significant.

Stresses on authorization
Until recently, companies have made the authorization
problem tractable through the use of simple rules that
dramatically reduce the size of the authorization ma-
trix:

ú All employees have read access to everything

ú Non-employees have no access to everything

ú All other operations are permitted only to a small
group that does all data entry

Under these rules, y is reduced to 1 (because all ob-
jects are treated the same); z is reduced to 2 (‘read’
and all other operations); a is reduced to 1 (there is no
state dependency) and x is reduced to 3 (internal, pub-
lic, and data entry).

This simple scenario will shortly become untenable.
Companies are focused on the ‘new economy’, joint
ventures, downsizing, e-commerce, Web portals, and
other trends whose effect is to increase the size of the
authorization matrix.

The rule ‘all employees read access to everything’ is
increasingly less useful as the notion of ‘the company’
becomes more complex. Manufacturing companies are
becoming less vertically integrated and are moving
towards outsourcing, collaboration, core competency,
and joint venture as their principal mode of business.
This change increases the complexity of the authoriza-
tion problem.

Contracting out (outsourcing) involves subdividing a
project among a number of contractors. Contractors
should be shown only the data they need to do their
job, but not other data. It is important to limit contrac-
tor access to information for many reasons. One is
that contractors may also work for competitors, and
hence, could accidentally or intentionally transmit in-
formation the competitor should not see. Another rea-
son is that access to unrelated information enables the
contractor to see other projects and needs, and hence
to bid more effectively on new work—thus costing
more than they would otherwise. Contractors need
more than just read access to data, because they are

often actively generating new engineering and manu-
facturing information.3 Workflow also becomes more
important because contractors may not be physically
on-site, and may even be in different time zones; in
these situations workflow is useful to ensure synchro-
nization of tasks.

Collaborative ventures are joint projects undertaken
with other firms in a peer relationship (rather than a
subcontracting relationship). Collaborators may include
current and future competitors. While collaborators
should have free access to data related to the project
on which they collaborate4, it is usually important to
ensure that competitors do not gain access to other
projects. Collaborators, like contractors, typically need
the ability to update information, not just to read it.

Joint ventures are semi-autonomous organizations that
are formed by otherwise competitive firms. A joint
venture may have its own IT department with its own
notions about how to do authentication and authoriza-
tion; for example, it may see less need for authoriza-
tion that do its parent companies, because the joint
venture’s information is wholly open to either parent.

E-commerce brings with it an expansion of the
authorization problem. Customers are beginning to ex-
pect online access to information about products both
past and present; in some cases, customers want and
companies to maintain information on as-installed and
as-maintained configurations. Customers of course
should only have access to their own configurations,
and not those of other customers. Customers them-
selves are complex entities; engineering personnel at a
given customer site should have different kinds of ac-
cess than accounts payable personnel, for example. As
an additional complexity, the rapid pace of mergers,
consolidations, and divestitures means that what counts
as a single customer changes over time.

All these factors increase the size and complexity of x
and y as well as increase their rate of change. It is not
unusual for a merger, a joint venture, a collaboration,
or some other significant corporate event to occur
during the lifetime of a data management system.

3 In some cases, even the management of engineering data itself

may be outsourced.

4 Although almost certainly not all of it; for example, a company
will keep its margin and cost information hidden from its col-
laborators.

Many companies are interested in workflow, but not all
have deployed it. Workflow will soon not be a matter
of choice, but a matter of survival. Configuration man-
agement departments that once had 40 people to man-
age engineering change are now reduced to 4. Shuf-
fling paper change forms is no longer a viable option—
particularly when so much of the change is happening
‘outside’ the firm. This means significant increases to
z and a.

The demands of the new economic climate simultane-
ously increase the importance and the difficulty of the
authorization problem.

Categorization and roles
One method proposed to ameliorate the authorization
problem is the use of categories and roles. A category
is a set of documents or objects; a role is a set of peo-
ple who are authorized to act in a certain way on a
given category. Generally we allow objects to belong
to more than one category, and people to belong to
more than one role. The authorization matrix might
then be expressed as (X, Y, z), where X is a set of
roles and Y is a set of categories. The use of roles and
categories can reduce the size of the authorization
matrix if it is the case that |X| << |x| and |Y| << |y|.
Role-based authorization [1] is founded on this as-
sumption.

Role-based authorization attempts to avoid redundancy
in the authorization matrix. Instead of specifying as
independent constraints that individuals x1, x2, x3,…xn

can each perform some operation on documents d1, d2,
d3,…dm, we simply define two sets X and Y, and es-
tablish a single authorization constraint between them.
This redundancy reduction also simplifies updates; in
the example given above, adding a single user to the
set X automatically gives the user access to all the
documents Y. The set-based constraint provides a
multiplicative benefit under update. However, there is
a corresponding downside: any error in defining the
sets also results in a multiplicative defect. If person xk

is mistakenly assigned to a role, then that person gains
much greater access than would be the case if a single
error occurred in a pairwise constraint system. Thus,
role-based authorization can reduce the cost of popu-
lating the authorization matrix, but increases the re-
quirement for assuring the matrix. Role-based authori-
zation also increases z, because it introduces the need
for operations to create and maintain roles and catego-
ries.

 Designing a matrix

The size of the authorization matrix and the number of
dimensions it contains make for a complex design
problem. The standard literature provides no formal
method for representing and solving such design prob-
lems. We propose the use of database normalization
techniques to construct a proper authorization matrix.

 A database design is a set of relations and associ-
ated constraints, such as keys and dependencies. A
good database design is a set of relations that controls
redundancy and ensures that updates will not result in
inconsistent data. Data normalization is a technique
for arriving at a good database design by constructing
relations according to known data dependencies.
There is a considerable body of work on normalization,
including definitions of normal forms, algorithms for
achieving normal forms, and complexity results [4][5].
A full exploration of data normalization is beyond the
scope of this paper, but the following gives some idea
of the flavor of the approach.

In order to apply database design techniques to the
authorization problem, we must recast the problem in
terms of attributes, dependencies, and relations. We
can then apply known normalization techniques to ar-
rive at a normalized schema that captures the data
elements in as concise a manner as possible, and
minimizes the update problems that might arise. We
next shall see an informal description of how this is
done.

Attributes
The previous statement of the authorization problem—
a matrix of persons, objects, and operations—does not
capture the full generality of the problem. A more
complete specification, which assumes a role-based
system, takes into account the following factors:

ú People take on one or more Roles in their
work activities, and Object access can be
based on a Person’s Role. For example, an
Author has permission to write while a Re-
viewer may only have read permission.

ú People belong to Groups, and Object access
can be based on Group membership. For ex-
ample, an Employee may be able to read some
Objects a Contractor may not.

ú An Object may comprise multiple Files, and
these may have different access rules. For

example, an editable file may be edited, while
an archive format file may not.

ú An Object exists in different Revisions, and
different Operations can be applied to these
Revisions. For example, an engineer may only
be able to read the current Revision, but can
both read and write a new (unreleased) Revi-
sion.

ú An Object can be in one of several States, and
the State may determine the Operations that
can apply to it. For example, a released Ob-
ject may be read-only, but an in-process Ob-
ject can be written.

ú Objects belong to one or more Categories.
Access rules may be defined in terms of
Categories instead of individual objects.

ú Operations belong to one or more sets we
shall call Capabilities. Access rules may be
defined in terms of Capabilities rather than in-
dividual operations.

ú Work is organized as a set of Transactions.
Each Transaction applies one or more Opera-
tions to one or more Objects.

The following attributes will be considered in our de-
sign:

ú Person

ú Operation

ú Object

ú Role

ú Group

ú Revision

ú File

ú State

ú Category

ú Capability

ú Transaction

Functional dependencies
Once we have identified attributes, we next look at the
dependencies between them. A functional depend-
ency X d Y exists between two sets of attributes X
and Y if for every value of X there exists only one

value of Y. Identifying the functional dependencies is a
key step in constructing a good database design, be-
cause the dependencies capture the sets of attributes
which must be updated simultaneously if consistency is
to be preserved.

The dependencies that apply to the authorization prob-
lem depend to a large extent on the business rules that
one wants to enforce. Thus, we cannot derive a set of
dependencies that apply to all situations. The following
dependencies may be regarded as typical.

An Object of a given Revision can be in only one
State. Different Revisions of an Object may be in dif-
ferent States.

FD1 Object, Revision d State

An Object of a given Revision can be modified by only
one Transaction at a time5. A Transaction can modify
more than one Object at a time. A given Object of a
given Revision need not be modified by any Transac-
tion.

FD2 Object, Revision d Transaction

A Person can only take one Role per Transaction6. A
Person may be in different Roles in different Transac-
tions.

FD3 Person, Transaction d Role

A given Person can apply a set of Operations to an
Object of a given Revision.

FD4 Person, Object, Revision d Capability

Often it is desirable to define access rules in terms of
sets of Persons (that is Groups or Roles), sets of Ob-
jects (that is, Categories), and sets of Operations (that
is Capabilities) rather than in terms of individual mem-

5 Note that in practice, Objects may be associated with Transac-

tions without being modified by them (for example, Objects may
be associated for reference purposes). In such cases FD2 should
be Object, Revision -> Modifying_Transaction. For simplifica-
tion, we restrict our notion of Transaction to include only Ob-
jects that are to be modified.

6 This restriction stops a Person from effecting a change and then
approving it.

bers of these sets7. Where this is the case, we have
one or both of the following additional dependencies:

All Objects within a given Category in a given State
permit a specific set of Operations to a Specific Group
or Role. Different Groups or Roles may have the same
set of Operations on a given Category in a given State.

FD5 Category, State, Group d Capability

FD6 Category, State, Role d Capability

Given a set of functional dependencies, we can derive
other implied dependencies through the use of closure
axioms8. Among the non-trivial dependencies that we
derive are the following:

Union of FD1 and FD2:

FD7 Object, Revision d State, Transaction

Augmentation of FD7:

FD8 Person, Object, Revision d State,
Transaction

Union of FD8 and FD4:

FD9 Person, Object, Revision d State,
Transaction, Capability

Reflexivity of F8 with Person

FD10 Person, Object, Revision d State,
Transaction, Person

Union of FD3 with State:

FD11 Person, Transaction, State d Role

Transitivity of FD10 with FD11, augmentation with
FD8, union with FD4;

FD12 Person, Object, Revision d State,
Transaction, Role, Capability

Pseudotransitivity of FD1 and FD5 (eliminating State):

FD13 Object, Revision, Category, Group d

7 Note that in general, a Person may belong to more than one

Group, an Operation may belong to more than one Capability,
and an Object may belong to more than one Category.

8 Defined in the Appendix.

Capability

Pseudotransitivity of FD1 and FD6 (eliminating State):

FD14 Object, Revision, Category, Role d
Capability

Pseudotransitivity of FD2 and FD3 (eliminating Trans-
action):

FD15 Object, Revision, Person d Role

Generation of a good database design
Given attributes and dependencies, we now attempt to
develop a set of relations that will have good update
and redundancy properties. Consider first of all the
design that would result if we simply put all attributes
in one table (attribute names shortened here for pres-
entation), thus directly representing what we have
called the authorization matrix:

Pn Op Ob Ro Gr Re Fi St Ct Cp Tr

This would be a valid relation, but suffers from the
following problems:

1. We do not know which set of attributes to use as
the key (that is, the unique identifier for a row)

2. We prefer avoiding null values in the table 9, but
this means we must provide information on every
attribute every time we add a row to the table.
We cannot, for example, easily add a row to show
that Object O belongs to Category C, because to
add a row we must provide information for every
attribute.

3. There is a lot of redundancy in the table. The fact
that Object O belongs to Category C is repre-
sented for each row that appears. This redun-
dancy costs space and presents the possibility that
an update can change the correspondence be-
tween O and C in some of the rows without
changing others, thus leading to inconsistency.

Database designers will recognize the (unnormalized)
authorization matrix as an instance of the universal
relation—that is, a single table with as many columns
as there are attributes. The universal relation contains

9 Writing correct queries in the presence of null values is difficult.

a significant amount of data duplication and some up-
date problems. The goal of database design is to nor-
malize this table into multiple tables that eliminate the
redundancy and avoid the update problems.

While the development of a normalized schema is be-
yond the scope of this paper, but we will show one
better-normalized schema and discuss its characteris-
tic. The database schema shown below consists of a
number of relations Ri, each consisting of a set of at-
tributes. The underlined attributes are the primary key
of each relation.

R1 Object, Category

R2 Person, Group

R3 Operation, Capability

R4 Object, File

The first four relations allow us to express the con-
tainment of Persons in Groups, Operations in Capabili-
ties, Objects in Categories, and Files in Objects. The
key in each case is the entire row, since no set has
exclusive ownership of any of its members. Since
these are binary relations, they are normalized.

The next set of relations are derived from the func-
tional dependencies we previously identified.

R5 Object, Revision, State

R6 Object, Revision, Transaction

R7 Person, Object, Revision, Role, Capa-
bility

R8 Category, State, Group, Capability

R9 Category, State, Role, Capability

The next five relations add the attributes of State,
Role, Revision, and Transaction. The key for each re-
lation is based on an appropriate functional depend-
ency. Because all of these relations except for R7
have only one non-key attribute, the design is easily
shown to be in third normal form, a benchmark for
good database design10.

10 The design is in first normal form because there are no repeating

groups; it is in second normal form because every non-key at-
tribute is dependent on the entire primary key; it is in third nor-
mal form because there are no transitive dependencies. The de-
tails behind these criteria can be found in Dutka and Hanson [4].

The use of normalization results in a database design
that has several nice properties.

ú By reducing the sizes of tables, we have enabled
updates that do not need as much data as is
needed for the universal relation. For example, we
can add information about a Person’s membership
in a Group without adding any other information.

ú By adhering to the functional dependencies, we
ensure that updates to any single table will leave
the database in a consistent state. For example,
removing a (Person, Group) tuple still leaves the
Person involved in all the pending Transactions for
which that Person had a Role.

ú We have guarantees that the database has minimal
redundancy.

Our schema is a relatively simple translation of func-
tional dependencies into relations. A more involved
solution might capture other dependencies that typi-
cally exist in a realistic authorization problem. Groups,
for example, are often organized in a containment hi-
erarchy so that supergroups can be defined as the un-
ion of subgroups (similarly for Categories and Capa-
bilities).

As the dimensions of the authorization matrix increase
and the dependencies proliferate, the use of the formal
techniques known to database design theory become
more necessary for generating a valid design. Nor-
malization theory provides the following benefits:

1. Well-understood normal forms, including their re-
lationships

2. Algorithms for achieving normal forms

3. Complexity results for the algorithms, including
known intractable problems

These benefits are essential if we are to produce a
valid authorization system and to assure its correctness
and reliability.

 Practical problems related to authorization

The abstract design of relational tables is important,
but authorization in realistic situations involves a num-
ber of practical complexities. In this section we discuss
a few of these.

Unintentional ‘back doors’
One typical problem in data management systems is
that not all parts of the system employ the authoriza-
tion mechanism. So-called ‘back doors’ allow users to
access information to which they do not have authori-
zation. One common back door is found in data man-
agement systems that have recently had a search en-
gine ‘bolted on the side’ to provide Web-like search
capability. When the search engine is not integrated
with the authorization model, it is sometimes possible to
know that data exists and to view some of the content
of data even if one is not officially authorized to access
it. Thus, it is possible to use the search engine to find
one’s own name in a file named DOWNSIZE.DOC,
and also know that this document is owned by one’s
manager, without having read access to the document.

Intelligent devices
Another typical problem area is in printing and scan-
ning. Data management systems generally do not
come with software for batch printing, application of
watermarks and banners, and other output-device-
specific software that is essential to user’s notion of
what a document management system ought to do.
This software is typically:

ú customized or locally developed; hence its security
is suspect

ú arcane; hence, it is difficult to evaluate its impact
on security

ú produced late in the deployment cycle, so there is
pressure to get the software ‘out the door’; hence,
security is put on hold in order to complete the
project

ú full of interactions with intelligent devices that can
be points of entry for a determined hacker.

The need for a printer or scanner to input and output
information is often not explicitly represented in the
authorization model (as it was not represented, for ex-
ample, in our database design), and so constitutes a
security hole.

MRP/ERP systems
A third area for problems is in interactions with
MRP/ERP systems. Engineering systems maintain
information such as bills of materials that are also
needed in production. The transfer of bills to
MRP/ERP systems is usually a task requiring third-

party or custom software. Since this data transfer usu-
ally updates data, it requires substantial authorization
privileges. The data transfer is often unprotected
against spoofing.

Intelligent objects
Objects managed in a data management system may
have authorization capabilities of their own. Adobe’s
Portable Document Format (PDF), for example, sup-
ports password-protected authorization controls on
certain operations such as modification, printing, con-
tent selection, and annotation. These authorizations are
controlled through Adobe Acrobat, rather than through
an authorization layer in a system environment. More
recently, systems have been designed which imple-
ment online authorization requests from distributed ob-
jects; examples of such systems include IBM’s Cryp-
tolopes, Xerox’s ContentGuard, and Authentica’s
PageRecall. There are also new systems proposed to
control access to electronic entertainment media [3].
A comprehensive security requirements effort must
specify how these kinds of technologies should be used
in concert with data management authorization.

 Discussion

Authorization as important as authentication
Although authentication and encryption get more at-
tention, many security breaches are really problems in
authorization. The notorious case of Wen Ho Lee at
Los Alamos is a recent example. Lee was not charged
with an authentication violation (that is, pretending to
be someone he was not, or attempting to gain access
to information for which he did not have rights), but
with transferring material from a secure computer to a
non-secure one—that is, with carrying out an unau-
thorized operation [9]. At least part of the problem is
that unauthorized operations were permitted by the
computing systems.

A key difference between authentication and authori-
zation is that the former is not a direct responsibility of
business process owners11, as is the latter. Business
process owners must come to grips with authorization,
because they will make authorization decisions on a
day-to-day basis. Deciding who gets access to what
information is a business decision, not a legal or tech-

11 This is not to say they are unimportant—only that they will be

managed by the IT group, rather than business process owners.

nical one. When access to information is itself a prod-
uct, the authorization system becomes a necessary
part of the production and distribution system for in-
formation.

Authorization, unlike authentication, can’t be pur-
chased as a turn-key system—vendors can sell you an
empty matrix, but you have to populate it and assure it.
There is little information available at a general level to
assist companies in learning how to populate the ma-
trix. Engineering data management systems are, in
many cases, the most elaborate example of the
authorization problem that companies have faced, and
their manual precursors do not provide a very useful
guide to how to manage automatic authorization.12

Moreover, the authorization problems that companies
will soon encounter could not be solved by manual
methods in any case.

The problems of grouping
Role-based authorization involves specifying sets of
persons and objects. We have already alluded to the
multiplicative effect that errors in the specification will
have. Mistakes in assigning persons to roles or docu-
ments to categories are common. The meaning and
use of classifications is fundamental to security, but
organizations do a remarkably poor job of establishing
workable classifications. Consider the ease with which
managers might confuse such categories as ‘unclassi-
fied controlled nuclear information’ and ‘sensitive but
unclassified nuclear information’[6]. Or consider the
distinction between ‘classifying’ data and ‘categoriz-
ing’ it: ‘PARD: Protect As Restricted Data’ is not a
classification level per se but ‘a handling method for
computer-generated numerical data or related infor-
mation, which is not readily recognized as classified or
unclassified because of the high volume of output and
low density of potentially classified data,’ and ranks
between unclassified and confidential, the lowest level
of classification’[9]. In general, categorization for se-
curity purposes is considered one of the most problem-
atic areas of governmental security [11]. It is much
easier to define categories than it is to ensure that
managers apply them consistently and correctly. I

12 In most cases, the manual authorization mechanism is based

entirely on personal knowledge: the person authorizing an opera-
tion knows both the object and the user and makes an independ-
ent one-time decision about that specific combination of object,
user, and object.

know of one Fortune 50 company in which there are
only four possible security classifications for docu-
ments, but whose managers consistently gave me dif-
ferent definitions of those classifications. Categoriza-
tion for authorization is subject to many of the same
problems that arise in other categorization contexts.

Role-based authorization is not compelling in situations
where a role doesn’t completely define authorization
across all objects. ‘Contractor’ appears to be a role,
and it is usually true that there is some information that
no contractor should see, but on the other hand, each
contractor needs read and modify access to distinctly
different sets of data. Hence, in addition to requiring a
role definition, it appears that we still need individual
specifications for each contractor. In such circum-
stances, there may be as many roles as there are indi-
viduals, and so role-based authorization would not re-
duce the size of the authorization matrix.

A common notion of things
A desirable authorization system is one that can be
applied to a wide spectrum of data. One barrier to a
wide-spectrum authorization system is the lack of a
standard notion of things. All systems share a notion
of persons, expecting them to be unique and stable
entities, and so authentication systems at least have a
common base to work with (facilitating, for example,
the idea of ‘single sign-on’).13 But authorization deals
with computer objects, and what constitutes an ‘ob-
ject’ depends largely on which software package you
use: operating systems deal with a universe of files,
relational databases deal with a universe of tables and
rows, object request brokers deal with a universe of
CORBA-compliant objects, intelligent objects deal with
pages or other subelements, Web servers deal with a
universe of URLs, and data management systems
control many of these elements and add workflow as
well. The ‘impedance mismatch’ between these sys-
tems makes it difficult to have an authorization mecha-
nism that spans them all.

One way to reduce impedance mismatch is to funnel
all data through a single namespace. This is a fairly old
technique: consider for example mapping objects such
as sockets into a file system namespace. Today, more
attention is given to the URL namespace. Netegrity

13 Looming on the horizon are issues such as how to separate hu-

man clones, how to safeguard bio-identification techniques
against advanced surgery and genetic techniques, and so on.

and Dascom are two companies with products that
provide access control to a URL namespace; if you
can assign URL ‘names’ to all your objects, then
authorization for these objects can be defined through
Netegrity or Dascom. This kind of approach is useful
for data access, but is less satisfactory for workflow
and other operations that require update. Another
namespace possibility is an object-based namespace,
possibly with something like the CORBA security
standard [2]. There are main problem with this solu-
tion is that most organizations aren’t CORBA-centric.

Architecture of an authorization system
From a system management point of view, it seems
reasonable to have a single centralized authorization
matrix, because this reduces administrative overhead.
From a security point of view, however, there is an
argument for not centralizing authorization. A central-
ized authorization system suffers the problems of any
centralized system: it is less robust to failure and error.
Redundancy is a common approach to increasing ro-
bustness. In manual authorization contexts, the classi-
cal form of redundancy is the two-man rule [8]. An
ICBM launch, for example, requires the coordinated
activities of a number of distinct people; this redun-
dancy in decisions tends to make the system as a
whole more robust to failure in any single component
(such as, for example, error or malicious intent on the
part of one of the persons). Research should be done
on authorization systems that employ redundancy to
improve their reliability.

It is worth rethinking the distinction between authori-
zation and authentication. One proposal is for merged
authentication and authorization systems, by incorpo-
rating authorization information in a certificate used for
authentication [7]. One problem with this approach is
that authorization is trending towards a time-sensitive,
rule-based property, rather than an unchanging attrib-
ute of a single individual. An alternative approach that
works in some contexts is to relinquish the need to
authenticate a person’s identity, and instead authenti-
cate their access permissions, as is done in trust man-
agement systems. This kind of approach is unknown to
most vendors and consumers of data management
products today.

 Conclusions

Authorization is an important problem, and one whose
impact is likely to increase in the near future. Rea-

soning about the design and effectiveness of such
systems is currently done informally. We need to con-
sider more formal solutions to developing and assuring
authorization systems. Database normalization tech-
niques can help in this regard. Work needs to be done
on developing more robust ways to categorize people
and objects, on system for identifying computer ob-
jects, and on the architecture of authorization systems.

 About the author

Darrell Raymond assists companies in acquiring and
deploying systems for document and product data
management. Raymond does extensive work with the
Gateway Group, an independent consultancy that spe-
cializes in data management systems. Raymond’s cli-
ents include Amtrak, Cummins Engine, Eastman Ko-
dak, General Electric, Los Alamos National Labora-
tory, Oxford University Press, and Siemens. Raymond
holds a Ph.D. in Computer Science from the Univer-
sity of Waterloo. He is presently an adjunct assistant
professor in UW’s Department of Computer Science
and is a member of the editorial board of the Springer-
Verlag journal Markup Languages: Theory & Prac-
tice.

 Appendix: inference axioms for functional
dependencies

Let A, B, C and D represent sets of attributes. Then
the following rules can be used to derive the closure of
a set of functional dependencies on A, B, C, and D:

Rule name Description

Reflexivity A d A

Augmentation If A d B,

 then AC d B

Union If A d B and A d C,

then A d BC

Decomposition If A d B, then

A d C where C is a subset of B

Transitivity If A d B and B d C,

then A d C

Pseudotransitivity If A d B and BC d D,

then AC d D

 References

[1] Barkley, John F., Cincottta, Anthony V., Fer-
raiolo, David F., Gavrilla, Serban, Kuhn, D. Rich-
ard, ‘Role Based Access Control for the World
Wide Web’, NIST (April 8, 1997).

[2] CORBA Security Service Specification V1.2
CORBA Services Specification Chapter 15 (De-
cember 1998).

[3] Content Protection System Architecture: A Com-
prehensive Framework for Content Protection,
Intel Corporation, International Business Ma-
chines Corporation, Matsushita Electric Industrial
Co., Ltd., Toshiba Corporation (February 17,
2000).

[4] Dutka, Alan F. and Hanson, Howard H. Funda-
mentals of Data Normalization, Addison-
Wesley (1989).

[5] Maier, David, The Theory of Relational Data-
bases, Computer Science Press, Rockville,
Maryland (1983).

[6] ‘Science at its Best, Security at its Worst: A Re-
port on Security Problems at the US Department
of Energy’, Report of the Special Investigative
Panel of the President’s Foreign Intelligence Ad-
visory Board (June 1999).

[7] Rubin, Aviel D., Geer, Rubin, Ranum, Marcus J.
Web Security Sourcebook , John Wiley & Sons
p. 317 (1997).

[8] Sagan, Scott D. The Limits of Safety: Organi-
zations, Accidents, and Nuclear Weapons,
Princeton University Press (1993).

[9] Schwartz, Stephen I. ‘Scientist, Fisherman, Gar-
dener…Spy? Bulletin of the Atomic Scientists’
56(6) pp. 24-30. (November—December 2000)

[10] Schneider, Fred B. ‘Enforceable Security Poli-
cies’ Information and System Security 3(1) pp
30-50 (2000).

[11] Smith, Jeffrey H. ‘Redefining Security: A Report
to the Secretary of Defense and the Director of
Central Intelligence’, Joint Security Commission
(February 28, 1994).

